3 research outputs found

    Prognostic algorithms for post-discharge readmission and mortality among mother-infant dyads: an observational study protocol

    Get PDF
    IntroductionIn low-income country settings, the first six weeks after birth remain a critical period of vulnerability for both mother and newborn. Despite recommendations for routine follow-up after delivery and facility discharge, few mothers and newborns receive guideline recommended care during this period. Prediction modelling of post-delivery outcomes has the potential to improve outcomes for both mother and newborn by identifying high-risk dyads, improving risk communication, and informing a patient-centered approach to postnatal care interventions. This study aims to derive post-discharge risk prediction algorithms that identify mother-newborn dyads who are at risk of re-admission or death in the first six weeks after delivery at a health facility.MethodsThis prospective observational study will enroll 7,000 mother-newborn dyads from two regional referral hospitals in southwestern and eastern Uganda. Women and adolescent girls aged 12 and above delivering singletons and twins at the study hospitals will be eligible to participate. Candidate predictor variables will be collected prospectively by research nurses. Outcomes will be captured six weeks following delivery through a follow-up phone call, or an in-person visit if not reachable by phone. Two separate sets of prediction models will be built, one set of models for newborn outcomes and one set for maternal outcomes. Derivation of models will be based on optimization of the area under the receiver operator curve (AUROC) and specificity using an elastic net regression modelling approach. Internal validation will be conducted using 10-fold cross-validation. Our focus will be on the development of parsimonious models (5–10 predictor variables) with high sensitivity (>80%). AUROC, sensitivity, and specificity will be reported for each model, along with positive and negative predictive values.DiscussionThe current recommendations for routine postnatal care are largely absent of benefit to most mothers and newborns due to poor adherence. Data-driven improvements to postnatal care can facilitate a more patient-centered approach to such care. Increasing digitization of facility care across low-income settings can further facilitate the integration of prediction algorithms as decision support tools for routine care, leading to improved quality and efficiency. Such strategies are urgently required to improve newborn and maternal postnatal outcomes. Clinical trial registrationhttps://clinicaltrials.gov/, identifier (NCT05730387)

    Patulin suppresses α1‑adrenergic receptor expression in HEK293 cells

    No full text
    Patulin (PAT) is a common mycotoxin contaminant of apple products linked to impaired metabolic and kidney function. Adenosine monophosphate activated protein kinase (AMPK), abundantly expressed in the kidney, intercedes metabolic changes and renal injury. The alpha-1-adrenergic receptors (α1- AR) facilitate Epinephrine (Epi)-mediated AMPK activation, linking metabolism and kidney function. Preliminary molecular docking experiments examined potential interactions and AMPK-gamma subunit 3 (PRKAG3). The effect of PAT exposure (0.2–2.5 μM; 24 h) on the AMPK pathway and α1-AR was then investigated in HEK293 human kidney cells. AMPK agonist Epi determined direct effects on the α1-AR, metformin was used as an activator for AMPK, while buthionine sulphoximine (BSO) and N-acetyl cysteine (NAC) assessed GSH inhibition and supplementation respectively. ADRA1A and ADRA1D expression was determined by qPCR. α1-AR, ERK1/2/MAPK and PI3K/Akt protein expression was assessed using western blotting. PAT (1 μM) decreased α1-AR protein and mRNA and altered downstream signalling. This was consistent in cells stimulated with Epi and metformin. BSO potentiated the observed effect on α1-AR while NAC ameliorated these effects. Molecular docking studies performed on Human ADRA1A and PRKAG3 indicated direct interactions with PAT. This study is the first to show PAT modulates the AMPK pathway and α1-AR, supporting a mechanism of kidney injury.The National Research Foundation and the University of KwaZulu-Natal College of Health Science.http://www.nature.com/srepam2021Physiolog
    corecore